

2012 Assessment Examination

FORM VI MATHEMATICS EXTENSION 2

Thursday 17th May 2012

General Instructions

- Writing time 1 Hour 30 minutes
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total — 55 Marks

• All questions may be attempted.

Section I - 7 Marks

- Questions 1–7 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 48 Marks

- Questions 8–11 are of equal value.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Checklist

- SGS booklets 4 per boy
- Multiple choice answer sheet
- Candidature 86 boys

Collection

- Write your candidate number clearly on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eight.
- Write your candidate number on this question paper and submit it with your answers.

Examiner

BDD

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Which of the following expressions is a primitive of $\frac{1}{\sqrt{4-9x^2}}$?

|1|

- (A) $\frac{1}{3}\sin^{-1}\frac{3x}{2}$
- (B) $\frac{1}{9}\sin^{-1}\frac{3x}{2}$
- (C) $\sin^{-1} \frac{3x}{2}$
- (D) $\frac{1}{2}\sin^{-1}\frac{3x}{2}$

QUESTION TWO

The remainder when $16x^4 - 8x + 3$ is divided by x + i is:

1

- (A) -13 + 8i
- (B) 19 + 8i
- (C) -13 8i
- (D) 19 8i

QUESTION THREE

The angle between the asymptotes of the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ is approximately: 1

- (A) 74°
- (B) 37°
- (C) 61°
- (D) 29°

Exam continues next page ...

QUESTION FOUR

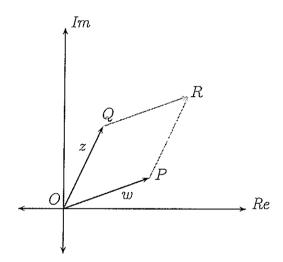
At the point $(2\cos\theta,\sin\theta)$ on the ellipse $x^2+4y^2=4$ the tangent has gradient:

1

- (A) $\frac{1}{2} \cot \theta$
- (B) $\frac{1}{2} \tan \theta$
- (C) $-\frac{1}{2}\cot\theta$
- (D) $-2 \tan \theta$

QUESTION FIVE

1

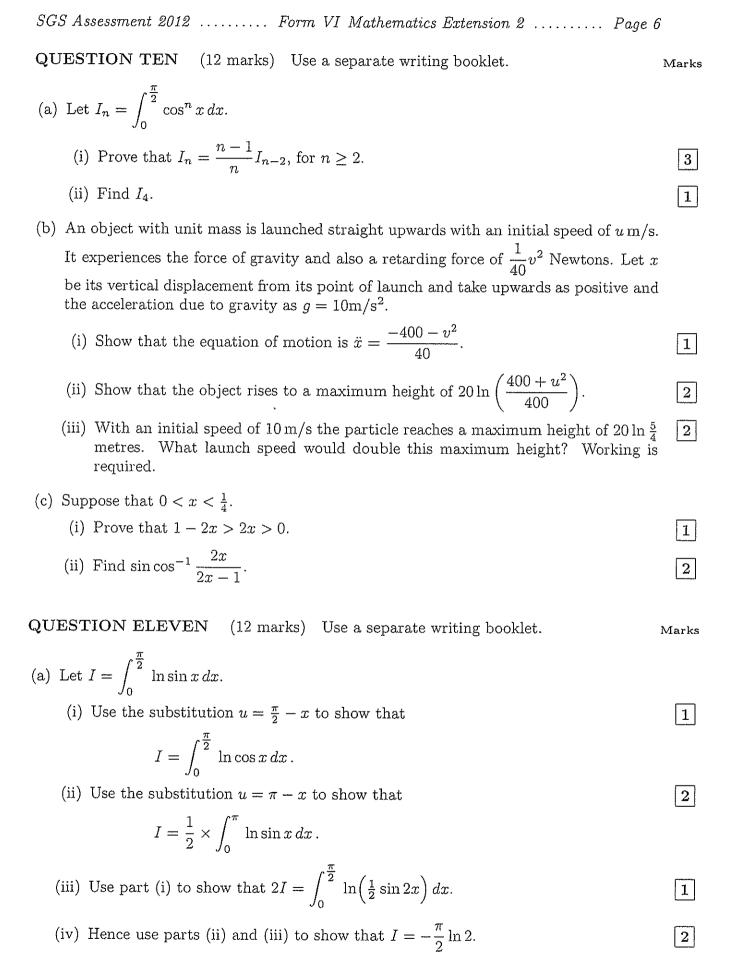


Let P and Q represent complex numbers w and z respectively in the first quadrant of the Argand Plane, with $\arg z > \arg w$, as in the diagram above. The diagram also shows the addition parallelogram. Then w-z is represented by the vector:

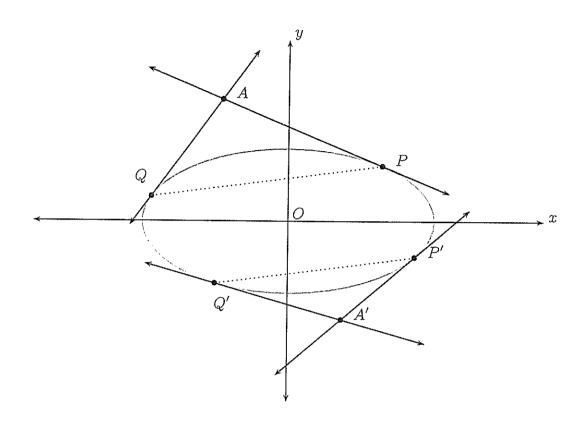
- (A) \overrightarrow{PQ}
- (B) \overrightarrow{RP}
- (C) \overrightarrow{OR}
- (D) \overrightarrow{QP}

SGS Assessmer	nt 2012 Form VI Mathematics Extension 2 Page 4	
QUESTION S One root of the	e quadratic equation $iz^2 + 3z + 3 - 11i = 0$ is $3 + 2i$. The second root is:	1
(B) -	-3+i	
(C) -	-6-2i	
(D) -	-3 - 5i	
by the accelerate the opens his pa terminal velocit Which statemen		
(B) H	His vertical speed never exceeds $40\mathrm{m/s}$.	
(C) H	His vertical speed never drops below 40 m/s.	
(D) V	We need to know his horizontal speed to complete this question.	
	———— End of Section I	

SGS Assessment 2012 Form VI Mathematics Extension 2 Page 5	í
SECTION II - Written Response	
Answers for this section should be recorded in the booklets provided. Show all necessary working. Start a new booklet for each question.	
QUESTION EIGHT (12 marks) Use a separate writing booklet.	Marl
(a) Using a suitable substitution, or otherwise, evaluate $\int_0^{\frac{\pi}{3}} \sec^2 x \tan x dx$.	2
(b) By a suitable use of a Pythagorean identity, find $\int \sin^3 x \cos^2 x dx$.	2
 (c) Consider the ellipse \$\mathcal{E}\$ with equation 9x² + 16y² = 144. (i) Find its eccentricity. (ii) Write down the coordinates of the foci. (iii) Write down the equations of the directrices. (iv) Sketch the ellipse, showing any intercepts with the axes and the information found above. 	$\begin{array}{ c c }\hline 1\\\hline 1\\\hline \hline 2\\\hline \end{array}$
 (d) It is known that the equation x³ + 3x² + 7x + 5 = 0 has roots α, β and γ. (i) Find a simplified monic polynomial equation with roots α + 1, β + 1 and γ + 1. (ii) Hence solve x³ + 3x² + 7x + 5 = 0. 	$\frac{2}{1}$
QUESTION NINE (12 marks) Use a separate writing booklet.	Mark
(a) Use a t-substitution to evaluate $\int_0^{\frac{\pi}{2}} \frac{1}{1 + \cos x + 2\sin x} dx$	4
 (b) Let P(x) = 2x³ + (1 - 4k)x² + (2k² - 2k)x + k². (i) Show that x = k is a double root of P(x) = 0. (ii) Hence find the third root of P(x) = 0. 	$2 \over 1$
(c) Consider the hyperbola \mathcal{H} with equation $xy=c^2$ where c is a positive constant and let $P(cp,\frac{c}{p})$ be a variable point on \mathcal{H} . Suppose that the tangent at P intersects the x -axis at A and let M be the midpoint of AP .	
(i) Show that the tangent to \mathcal{H} at P has equation $x + p^2y = 2cp$.	2
(ii) Show that M has coordinates $\left(\frac{3}{2}cp, \frac{c}{2p}\right)$.	2
(iii) Find the Cartesian equation of the locus of M , as P moves along the hyperbola \mathcal{H} .	1
Exam continues overleaf	



(b)



Consider the ellipse \mathcal{E} with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where b < a. Let O(0,0) be the centre of the ellipse.

Let PQ be the chord of contact defined by the point $A(x_0, y_0)$ external to the ellipse such that $P(x_1, y_1)$ and $Q(x_2, y_2)$ lie on \mathcal{E} .

Similarly let P'Q' be the chord of contact defined by the point $A'(x_0', y_0')$ external to the ellipse such that $P'(x_1', y_1')$ and $Q'(x_2', y_2')$ lie on \mathcal{E} .

- (i) Show that the tangent to \mathcal{E} at $P(x_1, y_1)$ has equation $\frac{x_1x}{a^2} + \frac{y_1y}{b^2} = 1$.
- (ii) Assume the chord of contact PQ has equation $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$. Show that if A, A' and A' are collinear, then the chords A' and A' are parallel.
- (iii) If the chords PQ and P'Q' are not parallel, then suppose they intersect at $R(x_3, y_3)$. Prove that the chord of contact from R lies on the line AA'.

End of Section II

END OF EXAMINATION

SECTION I - Multiple Choice

QUESTION ONE

The required indefinite integral is:

$$\int \frac{1}{\sqrt{4 - 9x^2}} = \frac{1}{2} \int \frac{1}{\sqrt{1 - \left(\frac{3x}{2}\right)^2}}$$
$$= \frac{1}{2} \times \frac{2}{3} \sin^{-1}\left(\frac{3x}{2}\right)$$

Hence A.

QUESTION TWO

Let $P(x) = 16x^4 - 8x + 3$. Then P(-i) = 19 + 8i. Hence B.

QUESTION THREE

The angle of inclination of the asymptote $y = \frac{b}{a}x$ is $\tan^{-1}(\frac{3}{4}) = 37^{\circ}$. The angle between the asymptotes is twice this, hence A.

QUESTION FOUR

By parametric differentiation, $\frac{dy}{dx} = \frac{\cos \theta}{-2\sin \theta}$, hence C.

QUESTION FIVE

The vector w - z runs from Q to P, hence D.

QUESTION SIX

Let the second root be α . Then the sum of the roots is $\alpha + 3 + 2i = 3i$, thus $\alpha = -3 + i$. Hence B.

QUESTION SEVEN

After 5 seconds, the skydiver is travelling at $50\,\mathrm{m/s}$, i.e. faster than the terminal velocity. Once he opens his parachute, his speed will slow to approach the terminal velocity, but never drop below this limiting velocity. Hence C.

SECTION II - Written Response

QUESTION EIGHT (12 marks)

Marks

2

(a)
$$\int_0^{\frac{\pi}{3}} \sec^2 x \tan x \, dx = \left[\frac{1}{2} \tan^2 x \right]_0^{\frac{\pi}{3}}$$
$$= \frac{1}{2} \left(\tan^2 \frac{\pi}{3} - \tan^2 0 \right)$$
$$= \frac{3}{2}$$

(b)
$$\int \sin^3 x \cos^2 x \, dx = \int \sin x (1 - \cos^2 x) \cos^2 x \, dx$$
$$= \left(\int \sin x \cos^2 x - \sin x \cos^4 x \right) \, dx$$
$$= \frac{-\cos^3 x}{3} + \frac{\cos^5 x}{5} + C$$

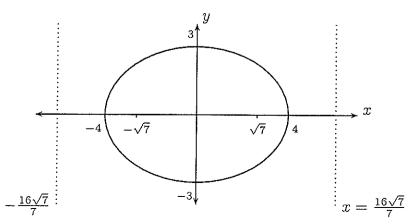
(c) (i) We have
$$b^2 = a^2(1 - e^2)$$
 so $e^2 = 1 - \frac{b^2}{a^2}$.

Since $a = 4$, $b = 3$ we have $e^2 = 1 - \frac{9}{16} = \frac{7}{16}$.

Hence $e = \frac{\sqrt{7}}{4}$.

(ii) The foci are
$$(\pm ae, 0) = (\pm \sqrt{7}, 0)$$
.

(iii) The directrices are
$$x = \frac{a}{e}$$
 or $x = -\frac{a}{e}$. That is, $x = \frac{16\sqrt{7}}{7}$ or $x = -\frac{16\sqrt{7}}{7}$.



(d) (i) Let $P(x) = x^3 + 3x^2 + 7x + 5 = 0$. The required polynomial is P(x-1). The equation is:

$$(x-1)^3 + 3(x-1)^2 + 7(x-1) + 5 = 0$$
$$x^3 - 3x^2 + 3x - 1 + 3(x^2 - 2x + 1) + 7x - 7 + 5 = 0$$
$$x^3 + 4x = 0$$
$$x(x^2 + 4) = 0$$

(ii) This new equation has roots $x=0,\ x=\pm 2i$. Hence the original polynomial equation has roots $-1,\ -1\pm 2i$.

QUESTION NINE (12 marks)

Marks

4

2

(a) Let
$$t = \tan \frac{x}{2}$$

Then $x = 2 \tan^{-1} t$

Thus $dx = \frac{2dt}{1+t^2}$

Hence
$$\int_0^{\frac{\pi}{2}} \frac{1}{1 + \cos x + 2\sin x} dx = \int_0^1 \frac{1}{1 + \frac{1 - t^2}{1 + t^2} + \frac{4t}{1 + t^2}} \frac{2}{1 + t^2} dt$$
$$= \int_0^1 \frac{2}{1 + t^2 + 1 - t^2 + 4t} dt$$
$$= \int_0^1 \frac{2}{2 + 4t} dt$$
$$= \int_0^1 \frac{1}{1 + 2t} dt$$
$$= \left[\frac{1}{2}\ln(1 + 2t)\right]_0^1$$
$$= \frac{1}{2}\ln 3$$

(b) (i) We have
$$P(k) = 2k^3 + (1 - 4k)k^2 + (2k^2 - 2k)k + k^2$$

 $= 2k^3 + k^2 - 4k^3 + 2k^3 - 2k^2 + k^2$
 $= 0$
and $P'(k) = 6k^2 + (1 - 4k)2k + (2k^2 - 2k)$
 $= 6k^2 + 2k - 8k^2 + 2k^2 - 2k$
 $= 0$

Hence k is a double root of P(x).

(ii) Since the product of the roots is $-\frac{k^2}{2}$, the third root must be $-\frac{1}{2}$.

$$\frac{dy}{dx} = \frac{dy/dp}{dx/dp}$$
$$= \frac{-\frac{c}{p^2}}{-c}$$
$$= -\frac{1}{n^2}$$

Hence at the point $P(cp,\frac{c}{p})$ the tangent is

$$(y - \frac{c}{p}) = -\frac{1}{p^2}(x - cp)$$
$$p^2y - cp = -x + cp$$
$$x + p^2y = 2cp$$

(ii) The x-intercept has coordinates A(2cp, 0). Point M is the midpoint of AP, hence it has coordinates

$$\left(\frac{1}{2}(2cp+p),\frac{1}{2}(0+\frac{c}{p})\right) = \left(\frac{3}{2}cp,\frac{c}{2p}\right)$$

(iii) Eliminating the parameter p is easily done by noting

$$xy = \frac{3}{2}cp \times \frac{c}{2p}$$
$$xy = \frac{3}{4}c^2$$

This is a hyperbola—simply a stretched version of the original.

QUESTION TEN (12 marks)

Marks

3

2

2

1

(a) (i) Using integration by parts,

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \, dx$$

$$= \int_{0}^{\frac{\pi}{2}} \cos x \times \cos^{n-1} x \, dx$$

$$= \left[\sin x \cos^{n-1} x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x \times -\sin x (n-1) \cos^{n-2} x \, dx$$

$$= 0 + (n-1) \times \int_{0}^{\frac{\pi}{2}} \sin^{2} x \cos^{n-2} x \, dx$$

$$= (n-1) \times \int_{0}^{\frac{\pi}{2}} (1 - \cos^{2} x) \cos^{n-2} x \, dx$$

$$= (n-1) \times \left(\int_{0}^{\frac{\pi}{2}} \cos^{n-2} x \, dx - \int_{0}^{\frac{\pi}{2}} \cos^{n} x \, dx \right)$$

$$= (n-1) \times \left(I_{n-2} - I_{n} \right)$$

Hence
$$I_n + (n-1)I_n = (n-1)I_{n-2}$$

$$nI_n = (n-2)I_{n-1}$$

$$I_n = \frac{n-1}{n}I_{n-2}$$

(ii)
$$I_4 = \frac{3}{4}I_2$$

$$= \frac{3}{4} \times \frac{1}{2} \times \int_0^{\frac{\pi}{2}} dx$$

$$= \frac{3}{4} \times \frac{1}{2} \times \frac{\pi}{2}$$

$$= \frac{3\pi}{4}$$

(b) (i) The forces on the object are gravity -mg and a retarding force opposing the motion $-\frac{1}{40}v^2$. By Newtons second law, the resulting force gives equation $m\ddot{x} = -mg - \frac{1}{40}v^2$. Taking g = 10 and m = 1 (since the object has unit mass) gives

positive
$$\uparrow \qquad \downarrow \qquad \downarrow \\
-mg \qquad -\frac{1}{40}v^2$$

1

2

$$\ddot{x} = -10 - \frac{1}{40}v^2$$

$$= \frac{-400 - v^2}{40}$$

(ii) Solving this equation of motion gives:

$$\ddot{x} = \frac{-400 - v^2}{40}$$

$$v \frac{dv}{dx} = -\frac{400 + v^2}{40}$$

$$-\frac{40v dv}{400 + v^2} = dx$$

Hence
$$\int dx = -20 \times \int \frac{2v}{400 + v^2} dv$$

 $x = -20 \ln(400 + v^2) + C$

Since x=0 when v=u, we have $C=20\ln(400+u^2)$. The maximum height x=H is attained when v=0, so

$$H = -20 \ln 400 + 20 \ln (400 + u^2)$$
$$= 20 \ln \left(\frac{400 + u^2}{400}\right)$$

(iii) We need to find what initial speed u gives a maximum height $40 \ln \frac{5}{4}$. That is, we must solve

$$40 \ln \frac{5}{4} = 2 \ln \left(\frac{400 + u^2}{400} \right)$$

$$2 \ln \frac{5}{4} = \ln \left(\frac{400 + u^2}{400} \right)$$

$$\ln \frac{25}{16} = \ln \left(\frac{400 + u^2}{400} \right)$$

$$\frac{25}{16} = \frac{400 + u^2}{400}$$

$$625 = 400 + u^2$$

$$225 = u^2$$

$$u = 15$$

(c) (i)
$$0 < x < \frac{1}{4}$$

$$0 < 2x < \frac{1}{2}$$

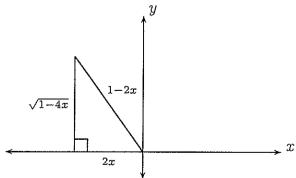
$$0 > -2x > -\frac{1}{2}$$

$$1 > 1 - 2x > \frac{1}{2}$$

But $\frac{1}{2} > 2x > 0$, so 1 - 2x > 2x > 0.

(ii) Let $\theta = \cos^{-1} \frac{2x}{2x-1}$. Since $\frac{2x}{2x-1} < 0$, the angle θ is in quadrant 2. The related triangle is drawn below: note that |2x-1| = 1 - 2x > 0. The missing side length ℓ in this triangle is given by

$$\ell^2 = (1 - 2x)^2 - (2x)^2$$
$$= 1 - 4x$$



The angle is in quadrant two, hence $\sin \theta = +\frac{\sqrt{1-4x}}{1-2x}$.

QUESTION ELEVEN (12 marks)

Marks

1

(a) (i)

 $I = \int_0^{\frac{\pi}{2}} \ln \sin x \, dx$ $= \int_{\frac{\pi}{2}}^0 \ln \sin(\frac{\pi}{2} - u) \times -du$ $= \int_0^{\frac{\pi}{2}} \ln \sin(\frac{\pi}{2} - u) \, du$ $= \int_0^{\frac{\pi}{2}} \ln \cos u \, du$ $= \int_0^{\frac{\pi}{2}} \ln \cos x \, dx$

relabelling u as x.

(ii)

 $I = \int_0^{\frac{\pi}{2}} \ln \sin x \, dx$ $= \int_{\pi}^{\frac{\pi}{2}} \ln \sin(\pi - u) \times -du$ $= \int_{\frac{\pi}{2}}^{\pi} \ln \sin(\pi - u) \, du$ $= \int_{\frac{\pi}{2}}^{\pi} \ln \sin u \, du$ $= \int_{\frac{\pi}{2}}^{\pi} \ln \sin x \, dx$

Hence

$$\int_0^{\pi} \ln \sin x \, dx = \int_0^{\frac{\pi}{2}} \ln \sin x \, dx + \int_{\frac{\pi}{2}}^{\pi} \ln \sin x \, dx$$
$$= 2I$$

The result now follows on dividing by 2.

(iii)

 $2I = \int_0^{\frac{\pi}{2}} \ln \sin x \, dx + \int_0^{\frac{\pi}{2}} \ln \cos x \, dx$ $= \int_0^{\frac{\pi}{2}} \ln (\sin x \cos x) \, dx$ $= \int_0^{\frac{\pi}{2}} \ln \left(\frac{1}{2} \sin 2x\right) dx$

2

1

2

2

|2|

(iv) Use the substitution
$$u = 2x$$
 in part (iii). Then

$$2I = \int_0^{\frac{\pi}{2}} \ln\left(\frac{1}{2}\sin 2x\right) dx$$

$$= \int_0^{\pi} \ln\left(\frac{1}{2}\sin u\right) \frac{1}{2} du$$

$$= \frac{1}{2} \times \int_0^{\pi} \left(\ln\frac{1}{2} + \ln\sin u\right) du$$

$$= \frac{1}{2} \times \left(\int_0^{\pi} \ln\frac{1}{2} du + \int_0^{\pi} \ln\sin u\right) du$$

$$= \frac{\pi}{2} \ln\frac{1}{2} + I$$

$$= -\frac{\pi}{2} \ln 2 + I$$

Hence $I = -\frac{\pi}{2} \ln 2$.

(v) By implicit differentiation,

$$\frac{2x}{a^2} + \frac{2yy'}{b^2} = 0$$

$$y' = \frac{-xb^2}{ya^2}$$

$$y' = \frac{-x_1b^2}{v_1a^2} \quad \text{at } (x_1, y_1)$$

The tangent at P has equation

$$(y - y_1) = \frac{-x_1 b^2}{y_1 a^2} (x - x_1)$$
$$\frac{yy_1 - y_1^2}{b^2} = \frac{-xx_1 + x_1^2}{a^2}$$
$$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2}$$
$$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$$

since (x_1, y_1) is on \mathcal{E} .

(vi) We are given that gradient
$$AO$$
 = gradient AO' and required to show that gradient PQ = gradient $P'Q'$.

By rearranging the chord of contact formula, the gradient of PQ is $\frac{-x_0b^2}{y_0a^2}$.

Similarly the gradient of P'Q' is $\frac{-x'_0b^2}{y'_0a^2}$.

Thus it is enough to show that $\frac{x_0}{y_0} = \frac{x_0'}{y_0'}$.

But gradient
$$AO = \frac{x_0 - 0}{y_0 - 0} = \frac{x_0}{y_0}$$
 and gradient $A'O = \frac{x'_0 - 0}{y'_0 - 0} = \frac{x'_0}{y'_0}$.
Since by assumption gradient AO = gradient AO' , we are done.

(vii) The equations of the chords of contact PQ and P'Q' from A and A' respectively are

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$$
 and $\frac{xx_0'}{a^2} + \frac{yy_0'}{b^2} = 1$

Now since $R(x_3, y_3)$ is on the intersection of PQ and P'Q', then it lies on both lines, that is its coordinates satisfy both equation. Hence

$$\frac{x_3x_0}{a^2} + \frac{y_3y_0}{b^2} = 1$$
 and $\frac{x_3x_0'}{a^2} + \frac{y_3y_0'}{b^2} = 1$

But the chord of contact from $R(x_3, y_3)$ has equation $\frac{x_3x}{a^2} + \frac{y_3y}{b^2} = 1$.

By the previous two equations (x_0, y_0) and (x'_0, y'_0) lie on this line. Hence the line AA' is the line through the chord of contact from R.

BDD

2